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Exercise 12.1

Let fn, f : X → Y be measurable maps on Banach spaces and such that fn(xn) → f(x) for
any sequence xn in X converging to x. Prove that f is continuous and fn converges to f locally
uniformly.

Proof. Suppose that f has a discontinuity at x, then there exists δ > 0 and yn → x such that

|f(yn)− f(x)| ≥ δ.

Let N0 = 1, and since fn(yk) → f(yk)

Nk = inf{N ≥ Nk−1 : |fn(yk)− f(x)| ≥ δ

2
,∀n ≥ N} < ∞.

Define xn = yk if n ∈ [Nk, Nk+1) then xn → x. But |fn(xn) − f(x)| ≥ δ
2 by the construction,

contradicting with the assumption and proving that f must be a continuous functions.
Suppose that fn does not converge locally uniformly. Then for any relatively compact set K,

there exists δ > 0 and xn ∈ K such that

|fnk
(xk)− f(xk)| > δ.

Now xk has a convergent subsequence, which we denote by yk, with limit y. We have

|fnk
(yk)− f(yk)| > δ.

Since f converges locally uniformly, there exists N with |f(yn)− f(y)| < δ
2 for any k > N and

|fnk
(yk)− f(y)| > δ/2,

contradicts the assumption. We have showed therefore for any K compact , any δ there exists N
such that |fn(x)− f(x)| < δ for all x ∈ K.

Exercise 12.2

Prove the following Continuous Mapping Theorem:

Let fn, f : X → Y be measurable maps between metric spaces such that fn(xn) → f(x) for
any sequence xn in X converging to x. If µn, µ ∈ P(X ) with µn → µ, Then (fn)∗µn → f∗µ. In
particular, if ξn are random variables converging to ξ in distribution, then fn(ξn) converges to f(ξ)
in distribution.

Proof. Denote νn = (fn)∗µn and ν = f∗µ. By Portmanteau theorem it is sufficient to show for any
G ⊂ Y open,

lim inf
n→∞

νn(G) ≥ ν(G).

Fix such an open set G ⊂ Y. For any x ∈ f−1(G), there exists a neighbourhood U and a number
m such that for all k ≥ m, fk(U) ⊂ G. Consequently, x ⊂ ∩∞

k=m(f−1
k (G))o, where the superscript

denotes the interior of a set, in particular it is an open set. Thus,

f−1(G) ⊂ ∪∞
m=1 ∩∞

k=m (f−1
k (G))o.
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Consequently,

f∗µ(G) = µ(f−1(G)) ≤ sup
m

µ(∩∞
k=m(f−1

k (G))o) ≤ sup
m

lim inf
n→∞

µn(∩∞
k=m(f−1

k (G))o)).

We have used µn → µ. Finally we obtain,

f∗µ(G) ≤ sup
m

lim inf
n→∞

µn(∩∞
k=m(f−1

k (G))o)) ≤ lim inf
n→∞

µn(f
−1
n (G)) = lim inf

n→∞
(fn)∗µn(G),

which completes the proof.

Exercise 12.3

Let P be a transition function on X and let V : X → R+∪{∞} be a Borel measurable function.
Suppose there exist a positive constant γ ∈ (0, 1) and a constant C > 0 such that

TV (x) ≤ γV (x) + C ,

for every x such that V (x) ̸= ∞. Then

TnV (x) ≤ γnV (x) +
C

1− γ
.

Proof. This is a consequence of the Chapman-Kolmogorov equations:

TnV (x) =

∫
X
V (y)Pn(x, dy) =

∫
X
TV (y)Pn−1(x, dy) =

∫
X

∫
X
V (y)P (z, dy)Pn−1(x, dz)

≤ C + γ

∫
X
V (z)Pn−1(x, dz) ≤ . . .

≤ C + Cγ + . . .+ Cγn + γnV (x) ≤ γnV (x) +
C

1− γ
,

completing the proof.

Exercise 12.4

Let F : X × Y → X be continuous and bounded, (ξn) a collection of i.i.d Y-valued random
variables independent of the X -valued random variable X0. Define

Xn+1 = F (Xn, ξn).

Suppose, furthermore, there exists a Borel measurable function V : X → R+ with compact sub-level
sets and constants γ ∈ (0, 1) and C ≥ 0 such that∫

Y
V
(
F (x, y)

)
P̂(dy) ≤ γV (x) + C , ∀x ∈ X ,

where P̂ is the distribution of ξn. Prove that the process X has at least one invariant probability
measure.

Proof. We recall from Exercise 7.1 that X was shown to induce a Feller semigroup. Moreover,

P (x,A) = E(X1 ∈ A|x0 = x) = E(F (X0, ξ0) ∈ A|X0 = x) =

∫
Y
1A(F (x, y))P̂(dy).

Then the left hand side of the given inequality is TV and V is a Lyapunov function. The existence
of an invariant probability measure now follows from the Lyapunov function test.
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