Solution Sheet 12
Exercise 12.1

Let fn,f : X — Y be measurable maps on Banach spaces and such that f,(x,) — f(x) for
any sequence , in X converging to x. Prove that f is continuous and f, converges to f locally
uniformly.

Proof. Suppose that f has a discontinuity at x, then there exists § > 0 and y,, — z such that

|f(yn) — f(z)| = 6.
Let Ny = 1, and since fy,(yx) — f(yk)

|

Ni =inf{N > Ny_1 : |fu(yr) — f(z)| > =,Vn > N} < oc.

Define @, = yi, if n € [Nj, Njt1) then z, — z. But |fu(z,) — f(z)] > I by the construction,
contradicting with the assumption and proving that f must be a continuous functions.

Suppose that f, does not converge locally uniformly. Then for any relatively compact set K,
there exists § > 0 and z,, € K such that

| i (k) = f (1) > 0.

Now xj has a convergent subsequence, which we denote by yi, with limit y. We have

| i (Ur) — f(yw)| > 0.

Since f converges locally uniformly, there exists N with |f(y,) — f(y)| < g for any k£ > N and
| frr (i) = f (W) > 6/2,

contradicts the assumption. We have showed therefore for any K compact , any § there exists N
such that |f,(z) — f(z)] < d for all z € K. O

Exercise 12.2
Prove the following Continuous Mapping Theorem:

Let fn,f : X — ) be measurable maps between metric spaces such that f,(z,) — f(z) for
any sequence x, in X converging to z. If un,p € P(X) with pn, — p, Then (fn)epin — fip. In
particular, if &, are random variables converging to ¢ in distribution, then f,,(&,) converges to f(§)
in distribution.

Proof. Denote vy, = (fn)spin and v = f,u. By Portmanteau theorem it is sufficient to show for any
G C Y open,
liminf v, (G) > v(G).

n—o0

Fix such an open set G C ). For any x € f~!(G), there exists a neighbourhood U and a number
m such that for all K > m, fi(U) C G. Consequently, z C ﬂzc’:m(fk_l(G))o, where the superscript
denotes the interior of a set, in particular it is an open set. Thus,

F7HG) € Upey M, (£ 1(6))°



Consequently,
fen(G) = u(f7H(G)) < sup PR (f H(G)°) < sup lim inf Hn (MR (fi H(G))°)).
We have used p,, — p. Finally we obtain,
Fop(G) < supliminf pin (O, (£ (G))?)) < liminf pn(fH(G)) = limnf (fa)in (G),
which completes the proof. ]
Exercise 12.3
Let P be a transition function on A and let V': X — R U{oo} be a Borel measurable function.
Suppose there exist a positive constant v € (0,1) and a constant C' > 0 such that
TV (z) <~AV(z)+C,
for every x such that V(x) # co. Then
C

gt
Proof. This is a consequence of the Chapman-Kolmogorov equations:

n _ naj _ n—lx — Py n—lx -
T v<x>—/Xv<y>P (. dy) /XTv<y>P (. dy) /X/waP( dy) Pz, d2)

< C—l—’y/ V(z) P" x,dz) < ...
X

TV (z) < 4"V (x)

C
completing the proof. O
Exercise 12.4

Let F': X x Y — X be continuous and bounded, (§,) a collection of i.i.d Y-valued random
variables independent of the X-valued random variable X;. Define

Xn+1 = F(Xnvgn)

Suppose, furthermore, there exists a Borel measurable function V: X — R, with compact sub-level
sets and constants v € (0,1) and C' > 0 such that

/)}V(F(:U,y)) P(dy) <AV(z)+C, VzelX,

where P is the distribution of &,. Prove that the process X has at least one invariant probability
measure.

Proof. We recall from Exercise 7.1 that X was shown to induce a Feller semigroup. Moreover,

P(z,A) =E(X; € Alzg = x) = E(F(Xo,&) € A|Xo=2) = / ]lA(F(x,y))If’(dy).

y
Then the left hand side of the given inequality is TV and V is a Lyapunov function. The existence
of an invariant probability measure now follows from the Lyapunov function test. O



